

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	APK Signer 1.0 documentation

APK Signer

Mozilla’s APK signing library and service

Description

The APK signing service is responsible for signing APK (Android package files)
with developer keys so that the APKs can be integrated securely into the Android
ecosystem.

See also:

	APK Factory Service [https://github.com/mozilla/apk-factory-service]

	APK Factory Library [https://github.com/mozilla/apk-factory-library]

Contents

	API
	Authorization

	Signer

	System

	Development
	Developer Setup

	Running Tests

	Running A development server

	Working On Docs

	Deployment

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	APK Signer 1.0 documentation

API

Here is the web API offered by the APK Signer.
Here are some URLs where you can find a deployed APK Signer:

	production

	TBD

	stage

	https://apk-signer.stage.mozaws.net/

All APIs accept standard application/x-www-form-urlencoded POST parameters.

Authorization

All incoming and outgoing requests are secured by a Hawk [https://github.com/hueniverse/hawk] shared key.
The setting HAWK_CREDENTIALS is a dictionary of consumers and credentials.
The following credentials are defined for use:

	apk-factory

	The APK Factory will communicate with the signing service to sign APKs.
All incoming requests to the signer must be signed with these
credentials. As per Hawk, the server signs its response using the same
credentials that the request was signed with.

All Hawk requests must sign their request payload (request body plus request
content-type). If both of these are blank, such as in a GET request,
you must sign them as empty strings.

Authorized API requests will respond with a Hawk header that signs the response,
including payload. For the best security, make sure your client is
authorizing incoming Hawk responses.

Signer

	
POST /sign

	This endpoint accepts an unsigned APK file and returns a new APK file that
has been signed with an Android key store.
This signing process works just like the standard
Android signing process [http://developer.android.com/tools/publishing/app-signing.html].

Request

	Parameters:	
	apk_id – A unique identifier for this APK such as one derived from a webapp
manifest URL. This value will be used as an Amazon S3 storage key.

	unsigned_apk_s3_path – An Amazon S3 path (in a shared bucket) to the unsigned
APK file that should be fetched and signed.
Example: /path/to/unsigned/file.apk.

	unsigned_apk_s3_hash – A SHA256 content hash (in hex) that can be used to verify the
contents of the APK file after fetching it from Amazon S3.

	signed_apk_s3_path – An Amazon S3 path (in a shared bucket) that the final, signed APK file
should be written to.
Example: /path/to/signed/file.apk.

Response

	Parameters:	
	signed_apk_s3_url – A publicly accessible Amazon S3 URL to the signed APK file.

Example:

{"signed_apk_s3_url": "https://s3.amazonaws.com/bucket/key/to/signed.apk"}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – request was invalid.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – authentication error.

System

There are some system APIs you can use to monitor the health of the APK Signer
system.

	
GET /system/auth

	This endpoint lets you test your Hawk [https://github.com/hueniverse/hawk] client to see that you are making
authorized GET requests correctly.

	
POST /system/auth

	You can also POST to the same endpoint to test an authorized Hawk request.

Response

Example response to GET:

{"message": "GET authentication successful"}

Example response to POST:

{"message": "POST authentication successful"}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – authentication error.

	
GET /system/cef

	A request to this endpoint will log an internal CEF
(Common Event Format) message.
This will let you test that the system is hooked up for CEF logging.

Response

Example:

{"message": "CEF messages sent"}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	
GET /system/log

	A request to this endpoint will send a test message to the
internal logging system.
This will let you test that the system is hooked up for logging.

Response

Example:

{'message': 'messages logged on server'}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	
GET /system/stats

	A request to this endpoint will increment a statsd [https://github.com/etsy/statsd/] key for testing
purposes.

Response

Example:

{"message": "apk_signer.system_check incremented"}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	
GET /system/tools

	This endpoint reports whether or not the required command line tools are
available.

Response

Example of 200 response:

{"detail": {"success": true, "keytool": "ok", "jarsigner": "ok"}}

Example of 409 response:

{"detail": {"success": false, "keytool": "MISSING", "jarsigner": "ok"}}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – conflict.

	
POST /system/trace

	A request to this endpoint will trigger an exception to test that
exceptions are handled correctly.

Response

N/A

	Status Codes:	
	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – internal error.

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	APK Signer 1.0 documentation

Development

Here’s a guide for how to hack on the APK Signer project.

Developer Setup

Set yourself up for local development using Python 2.7 and
a virtualenv [http://www.virtualenv.org/en/latest/] (recommended: virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]) like:

git clone git@github.com:mozilla/apk-signer.git
cd apk-signer
mkvirtualenv apk-signer
pip install --no-deps -r requirements/dev.txt

Make sure you create a local settings file:

cp apk_signer/settings/local.py-dist apk_signer/settings/local.py

Running Tests

./manage.py test

This uses django-nose [https://github.com/django-nose/django-nose] so you can do all the nose [https://nose.readthedocs.org/en/latest/] things you’re probably
used to.

Running A development server

Take a look at apk_signer/settings/local.py and fill in some local settings
according to the comments. You’ll probably need to set some things up like
Amazon S3 storage credentials.

When you’re ready, start a development server like:

./manage.py runserver

Then open http://127.0.0.1:8000/

Working On Docs

pip install --no-deps -r requirements/docs.txt
make -C docs/ html

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	APK Signer 1.0 documentation

Deployment

Before configuring the app for deployment, read through
Development; some concepts may apply.

See apk_signer/settings/sites/* for site-specific settings files.

The signer can run in two user modes (in Django settings):

APK_USER_MODE = 'END_USER'
APK_USER_MODE = 'REVIEWER'

	REVIEWER mode

	The signer instance is intended for app reveiwers.
In this mode APKs are self-signed with a short lived key store.
Key stores are never re-used.

	END_USER mode

	The signer instance is intended for end-users on Firefox for Android.
In this mode APKs are self-signed with a long-lived key store
that is associated with the app’s manifest URL. When an app is
updated, the same key store is used to sign new APK versions.

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	APK Signer 1.0 documentation

 HTTP Routing Table

 /sign |
 /system

 			

 		
 /sign	

 	
 	
 POST /sign	

 			

 		
 /system	

 	
 	
 GET /system/auth	

 	
 	
 GET /system/cef	

 	
 	
 GET /system/log	

 	
 	
 GET /system/stats	

 	
 	
 GET /system/tools	

 	
 	
 POST /system/auth	

 	
 	
 POST /system/trace	

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	APK Signer 1.0 documentation

Index

 Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 routing table |

 		APK Signer 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Mozilla.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

